Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Energies ; 15(10):3570, 2022.
Article in English | ProQuest Central | ID: covidwho-1871663

ABSTRACT

In Europe, the recent application of regulations oriented to zero-energy buildings and climate neutrality in 2050 has led to a reduction in energy consumption for heating and cooling in the construction sector. The thermal insulation of the building envelope plays a key role in this process and the requirements about the maximum allowable thermal transmittance are defined by country-specific guidelines. Typically, high insulation values provide low energy consumption for heating;however, they may also entail a risk of overheating in summer period and thus negatively affect the overall performance of the building. In addition, the embodied energy and related emissions caused by the manufacturing and transportation processes of thermal insulation cannot be further neglected in the evaluation of the best optimal solution. Therefore, this paper aims to evaluate the influence in terms of embodied and operational energy of various walls’ thermal insulation thicknesses on residential buildings in Europe. To this end, the EnergyPlus engine was used for the energy simulation within the Ladybug and Honeybee tools, by parametrically conducting multiple iterations;53 variations of external wall U-value, considering high- and low-thermal-mass scenarios, were simulated for 100 representative cities of the European context, using a typical multifamily building as a reference. The results demonstrate that massive walls generally perform better than lightweight structures and the best solution in terms of energy varies according to each climate. Accordingly, the wall’s thermal transmittance for the samples of Oslo, Bordeaux, Rome and Almeria representative of the Continental, oceanic temperate, Mediterranean, and hot, semi-arid climates were, respectively: 0.12, 0.26, 0.42, and 0.64 W/m2K. The optimal solutions are graphically reported on the map of Europe according to specific climatic features, providing a guidance for new constructions and building retrofit.

SELECTION OF CITATIONS
SEARCH DETAIL